

THEBESTOF 2WORIDS

The fusion of the advantages of wheeled and crawler excavators wheeled and crawler excavators brought about a unique Mecalac solution, conjugating mobility, versatility, stability, accessibility, driving user friendliness driving user friendliness,
lifting power and profitability. lifting power and pro
This is MWR series.

DESIGN:ASTRONG
 AND STRATEGIC COMPONENT OF THE MECALAC IDENTITY

"Our strength? Offering each client the most efficient solution. A deep analysis of users' work process allows us to provide the right industrial and versatile answer to their requests. This approach allows to offer better fitted machines based on the real needs of the jobsite. At Mecalac, design has always been part of our creation process. It is a strong and strategic component of our brand identity and products and is not limited to mere aesthetics. Our design is functional and secure. It blends ergonomics with smooth flowing lines"

Patrick Brehmer,
Head of Marketing,
Product Management \& Design

AN EXCLUSIVE CONCEPT, A UNIQUE SOLUTION

By lowering the center of gravity of the new MWR relative to its competitors, Mecalac revolutionizes by 100% the world of wheeled excavators.

Consequences on all 'levels': from stability to accessibility, by way of security and 'all terrain' mobility, the machine gains in balance and in force without dropping any of its initial qualities.

More than a machine, the MWR is the achievement of a new concept and the result of a combined expertise of Mecalac for both wheeled and crawler excavators.

Its design has been developed to answer very demanding and complex specifications which Mecalac managed to implement in one single and unique machine.

The result: a machine with XS proportions and with XL lifting power, versatile and ultra-stable.

Moreover, the 9MWR benefits from the latest interior and exterior patented Mecalac technologies (articulated boom with offset, cylinder coupling, Connect quick coupler, central command selector, 'speed control' function)

AWARD 2016

Mecalac wins the Prize for Design of the 2016 Innovation AWARDs at the world exhibition BAUMA for the new concept of excavators on tyres: MWR


```
(bauma mithatin
(bauma )/, % %
```


	WHEELED EXCAVATORS	CRAWLER EXCAVATORS	
Mobility	-		-
Versatility	-		-
Autonomy	-		-
Driving user-friendliness		-	-
Ability for all types of terrain		-	-
Security		-	-
Accessibility		-	-
Stability		-	\bullet

ATVR27.9.11

USER FRIENDLY

Optimize security for
the operator as for the
workers' team of both
urban and suburban
construction sites:

- maintenance feet on the ground
- oscillation locking by the brake pedal and the joystick
- reduced access height
- excellent compactness
- optional integrated and automated cameras
- excellent visibility

$$
\left[\begin{array}{l}
2]
\end{array}\right.
$$

DRIVING USER－FRIENDLINESS

PARKING，WORK OR ROAD MODE，IN ONE SINGLE SWITCH．

Thanks to the unique central selector，the driver can switch into road or parking mode in a single movement，thus sparing 7 to 10 manipulations．With this unique global exclusivity，everything can be done instantly by selecting the desired configuration．

With this unique，worldwide exclusive，everything an be done instantly by selecting the desired configuration．This guarantees faultless and ultra－ safe driving on construction sites，leaving the driver free to calmly focus on the tasks at hand and take full control of the machine

CONNECT 'ATTACHED' TO VERSATILIT

IN ORDER TO MAKE ITS MACHINES EVER SAFERAND MOREVERSATILE, MECALAC INTRODUCES CONNECT, ITS PATENTED OUICK COUPLER, NOTABLE FOR ITS LIGHTNESS, INTEGRATION, USERFRIENDLINESS, REVERSABILITY AND ITS PERFECTSAFETY.

Controlled from the cab, there is zero risk of it detaching from he tool either while it is being connected or while in operation It is equipped with a detection system that alerts the driver if the tool is improperly secured (with visual and audible signals) Not only that, but it is also reversible and has an automatic play compensation function, making the CONNECT quick coupler the ultimate connection between tool and machine!

THE QUEST FOR SIMPLICITY: DRIVINGOUR RESEARCH

THE MWR REPRESENTS A NEW WAY TO INTERACT WITH CONSTRUCTION VEHICLES, THANKS TO ITS COMPLETELY REDESIGNED INTERNAL AND EXTERNALERGONOMICS AND UNIQUE INTERFACE BETWEEN HUMAN-MACHINE THAT COMBINES ACCESSIBILITY AND SAFETY.

Each and every driver action is simplified, affording greater protection of everybody on the worksite. When it comes to innovation, 'less is more' is definitely one of the keys to Mecalac's success.

CLIMB UP AND DOWN EASILY

THANKS TO THE LOWERED CENTRE OF GRAVITY OF THE MACHINE, THE CABIN IS PERFECTLYACCESSIBLE TO THE DRIVER, WITHOUT MAKING TOO MUCH EFFORT OR TAKING ANY RISKS.

The cab is 20% lower compared to rival products on the market so now entering and exiting the vehicle requires much less effort, and is further eased by the addition of a step that has been perfectly incorporated into the machine's design. One small step for man; one giant leap for worksite safety.

FILL UP YOUR TANK EFFORTLESSLY

THE TANK IS EXTREMELY ACCESSIBLE AS IT IS LOCATED ON THE UNDERCARRIAGE AT A REACHABLE HEIGHT．

Besides helping lower the centre of gravity，the lower－down position of the tank and its increased capacity also mean that the driver or fleet manager no longer has to carry out any operations at height， nor is there anything in the way when driving the vehicle．With the majority of other excavators still mounting the fuel tank in the upper carriage，filling up an MWR is as simple as it is safe．Because daily upkeep should always be risk－free．

avara $7 \cdot 9 \cdot 11$

optimal PERFORMANCE

MWR machines are equipped with numerous technical characteristics for optimal construction site management on all types of terrain.

- naturally balanced
- all terrain capacity
- manœuverability
- agility
- compactness
- lifting power

NATURALLY BALANCED

THE NEW MWRS BENEFIT

 FROM 360° ISO STABILITY: THIS MEANS THE MACHINE'S STABILITY REMAINS THE SAME REGARDLESS OF THE ROTATION ANGLE OFTHE UPPER CARRIAGE.Lift, place, move, unload... all without moving. The new MWRs transform worksite logistics thanks to their incredible stability in any position and on any terrain. Whatever the conditions, they stay balanced both when travelling in transfer operations between sites as well as during work phases. This gives them 360° lifting performance - an extraordinary feat.

GROUND CLEARANCE

THE LOWERED CENTER OF GRAVITY HAS ABSOLUTELY NO INCIDENCE ON THE GROUND CLEARANCE HEIGHT, WHICH IS AN EXCLUSIVE 'MADE IN MECALAC' PARADOX.

In order to guarantee the machine's mobility in spite of ground's unevenness, the machine keeps enough height to avoid rubbing and risks of tearing out the undercarriage

PERFORMANCE

MANGUVERABILTTY \& COMPACTNESS

The new MWRs can be equipped with 4 steering wheels thus allowing you to do a U-turn practically on the spot and effectively overcome all obstacles. The aim: ensuring a maximum mobility in narrow spaces

2.5 TIMES MORECOMPACT THANACLASSIC EXCAVATOR

AGILITY

Efficiency of movement
When the leeway is limited, the MWRs are a powerful ally. Their perfectly integrated and light offset and their 3-part arm allow them to work outside the pattern of the machine.

MOBILITY

Best manoeuvrability
The 3 direction modes enable the MWR to get out of any situation.

COMPACTNESS ATWORK

in the service of security
With their XS dimensions, their 360° rotation and their exceptional angular displacement of the boom, the MWRs only require one way in an urban area to carry out their missions, thus preserving the security of pedestrians and

MAXIMUM COMPACTNESS

for minimum bulk
This useful compactness frees 100\% performances and 100% functions, therefore reducing the impact of urban construction sites on the environment.

AN UNRIVALLED
 COMPACTNESS／LIFTING
 CAPACITY RATIO：

The unique architecture of the new MWRs makes these powerful and precise handling machines capable of lifting up to 3 tons to 3 m and 360° ！

AMPLITUDE

Equipped with a loader bucket or with pallet forks，the new MWRs allow for an unusual range of amplitude whether this is positive for loading a truck or negative for offloading pallets．

＋

PERFORMANCE

FROM VERSATILTTYTO AUTONOMY

EXPERTISE IS BORN OF EXPERIENCE. OURS IS BASED ON THE STRONG CONCEPT THAT PROFITABILITY CANNOT BE CONSIDERED WITHOUT SIMPLICITY OF USE, COUPLED WITH VERSATILITY IN FUNCTIONS.

No matter the job, the country or the corporate culture, we offer the best visibility, manoeuvrability and freedom on each constuction site for optimal autonomy.

LARGE DIGGING

 AMPLITUDE

GTVNR27.9.11

siup YOURMWR

The new MWR comes standard equipped with a number of features, while at the same time remaining attentive to the specifications required by various types of customers: landscape and earthwork contractors, public works' professionals, municipal authorities, etc. So, from the color scheme to the choice of tires, heating/AC or cameras, not to mention the various attachments, buckets and hydraulic tools which can be used, there are many different ways to tailor your new MWR to your brand and business.

CUSTOM COLORS

You wish to get your MWR with your brand colors? Customize your Mecalac with your own RAL color codes.

Color examples

TIRES CHOICES

7MWR-9MWR
Simple Alliance 365/70 R18 EM (standard)
Large Alliance 500/45 R20
Twin BKT 8.25-20 (with spacer)

IIMWR

Simple Alliance 18-19.5 (standard)
Large Alliance 600/40 R22.5
Twin BKT 9.00-20 (with spacer)

TECHNOLOGIE

MyMecalac Connected Services (Telematics)

[^0]
CAB-COMFORT AND SAFETY

Air conditionning (increases cab height)
Rotating beacon
LED rotating beacon
Travel alarm
White noise type adaptative travel alarm
Overload buzzer (additional to screen indicator)
Additional front working light
Rear working light, LED
Stereo USB Bluetooth radio
Heated pneumatic seat
Rear cam (in addition to the side cam)
Pattern changer ISO / SAE
Rain protector
Cabin sun visor (standard)
12V Plug
Preparation for installation of a fleet management system

FRAME

4 steering wheels $30 \mathrm{~km} / \mathrm{h}$ (7MWR and 11MWR)
2 steering wheels $35 \mathrm{~km} / \mathrm{h}$ (9MWR)
2 steering wheels $30 \mathrm{~km} / \mathrm{h}$ (11MWR)
4 steering wheels 20km/h (9MWR and 11MWR)
4 steering wheels $35 \mathrm{~km} / \mathrm{h}$ (9MWR)
Steering direction inversion (4 steering wheels only)
Mudguards (4 steering wheels only)
Front blade and stabilisers
Blade rear (standard)
Rubber protective pads under stabilisers
Clamshell grab support
Additional counterweight
Blade preparation for trailer hook

ENCINE

Diesel Particulate Filter (DPF) (standard in Europe) Automatic engine idle shutdown
Electric diesel refueling pump with automatic stop Anti-theft device - electronic immobilizer with 6 keys

AUXILTARYLINES

Additional proportional auxiliary line (diverted offset
cylinder for rotating function of a clamshell)
Additional auxiliary line (diverted bucket cylinder for opening / closing function of a clamshell)
Hammer return line

ANTIDROP SAFETYVALVES

Safety valves on boom, adjustable boom
dipperstick (standard)
Safety valves on boom, adjustable boom
dipperstick, bucket

QUICK COUPLER

Mecalac CONNECT hydraulic quick coupler with hook

Device for the Direct Coupling of tools on dipperstick ("pin-on") with pins, in-cab switch and hydraulic lines for quick couplers

LUBRICATION

Standard manual greasing: single point for turret and first boom (standard)
Centralized, manual lubrication turret, boom and stick (except axles between connecting rod and quick coupling system)
Centralized, automatic lubrication for turret, boom and stick (except axles between connecting rod and quick coupling system)

OIL CHOICES

Hydraulic oil (VG 46) (standard)
Hydraulic oil Syn Panolin (HLP 46)
Hydraulic organic oil Panolin (HLP 46) Hydraulic oil for cold weather (ISO 32) Hydraulic oil for hot weather (ISO 68) Hydraulic oil for very hot weather (ISO 100)

7.Q.乌MMWR

DIGGINGBUCKEIS

7MWR	WIDTH mm (ft in)	number of teeth	VOLUMEI (yd ${ }^{\text {s }}$)	WEIGHT kg (b)
DIGGING BUCKET with teeth or no teeth	350 (1'2")	3	100 (0.13)	121 (267)
	450 (1'6")	3	130 (0.17)	131 (289)
	600 (2')	4	185 (0.24)	150 (330)
	750 (2'5.5")	5	240 (0.31)	169 (372)
	900 (2'11")	5	300 (0.39)	185 (407)
9MWR	WIDTH mm (it in)	number of teeth	VOLUME ($\mathrm{yd}^{\text {s }}$)	WEICHT kg (b)
DIGGING BUCKET with teeth or no teeth	350 (1'2")	3	115 (0.15)	130 (286)
	450 (1'6")	3	150 (0.20)	140 (308)
	600 (2')	4	220 (0.29)	160 (352)
	750 (2'5.5")	5	285 (0.37)	180 (396)
	900 (2'11")	5	355 (0.46)	197 (434)
11MWR	WIDTH mm (it in)	number of teeth	VOLUME (yd $^{\text {s }}$)	WEICHT kg (b)
DIGGING BUCKET with teeth or no teeth	350 (1'2")	3	150 (0.20)	204 (449)
	450 (1'6")	3	190 (0.25)	222 (489)
	600 (2')	3	275 (0.36)	255 (562)
	750 (2'5.5")	4	360 (0.47)	292 (643)
	900 (2'11")	4	450 (0.59)	328 (723)
	1200 (3'11)	5	630 (0.82)	393 (866)

NARROWBUCKET

TYPE	WIDTH $\mathrm{mm}(\mathrm{ft} \mathrm{in})$	number of teeth	VOLUME ((yd $\left.{ }^{3}\right)$	WEIGHT kg (b)
NARROW BUCKET	$300\left(1^{\prime}\right)$	3	$80(0.10)$	$219(482)$

LOADERBUCKETS (SKIDAND4X1)

7MWR	WIDTH mm (ft in)	number of teeth	VOLUME ($\mathrm{yd}^{\text {d }}$)	WEICHT kg (lb)
SKID BUCKET no teeth	2200 (7'3")	-	540 (0.71)	378 (833)
9MWR	WIDTH mm (tt in)	number of teeth	VOLUMEI($\mathrm{yd}^{\text {s }}$)	WEICHT kg (b)
SKID BUCKET no teeth	2310 (7'7")	-	570 (0.75)	389 (857)
11MWR	WIDTH mm (tt in)	number of teeth	VOLUMEI(yd ${ }^{\text {s }}$)	WEICHT kg (b)
SKID BUCKET no teeth	2500 (8'2")	-	820 (1.1)	$475(1,047)$
SKID BUCKET 4x1 with or without teeth	2200 (7'3')	7	540 (0.71)	$617(1,360)$
4X1 BUCKET CONNECTION SET, 4 FLEXIBLE JOINTS	-	-	-	5 (11)
BOLTED COUNTERBLADE FOR 4X1 BUCKET with no teeth 7 boreholes - center-to-center borehole distance 360 mm ($1^{\prime} 2^{\prime \prime}$)	2200 (7'3")	-	-	62 (136.6)
TEETH PROTECTION FOR 4x1 BUCKET				11 (24)

PAUETFORK

TYPE	Specifications	WEIGHT kg (b)
PALLET FORK	to be used with 4 safety valves	330 (728)
KIT BLADE-MOUNTED PALLET FORKS		52 (114.6)

HYDRAULCTHUMB
 \section*{7MWR
 \section*{7MWR
 HYDRAULIC THUMB with teeth}

Available with the 2-piece boom with offset only

7.Q.ЛीMWR

TECHNICAL DATA

WEIGHT	7MWR	9MWR	11MWR
In running order, without bucket, with 75 kg (165 lb) operator, fuel tank full without optional equipment, standard tires			
- Rear blade	$6925 \mathrm{~kg}(15,300 \mathrm{lb})$	7900 kg (17,400 lb)	$10000 \mathrm{~kg}(22,050 \mathrm{lb})$
- Front stabilisers + blade	not available	+300 kg (+661 lb)	+450 kg (+992 lb)
- Large tires	+60 kg (+132 lb)	+60 kg (+132 lb)	+160 kg (+352 lb)
- Twin tires	+350 kg (+771 lb)	+350 kg (+771 lb)	+380 kg (+837 lb)
ENGINE	7MWR	9MWR	11MWR
Turbo charged engine with intercooler, EGR valve and catalytic converter (DOC), complying with emissions standards		EU Stage V U.S. EPA Tier 4 Final*	
Diesel 4 in-line cylinders	DEUTZ TD 2.9 L4	DEUTZ TCD 2.9 L4	DEUTZ TCD 3.6 L4
Horsepower (DIN 70020) Engine speed	55.4 kW (75hp - 74.3 imperial hp) 2300 rpm	$\begin{gathered} 55.4 \mathrm{~kW} \text { (75hp - } 74.3 \text { imperial hp) } \\ 2300 \text { rpm } \end{gathered}$	55.4 kW (75hp - 74.3 imperial hp) 2200 rpm
Maximum torque	300 Nm at 1600 rpm (221 ft.lbf at 1600 rpm)	300 Nm at 1600 rpm (221 ft.lbf at 1600 rpm)	390 Nm at 1300 rpm (288 ft.lbf at 1300 rpm)
Cubic capacity	$2900 \mathrm{~cm}^{3}\left(177 \mathrm{in}^{3}\right)$	$2900 \mathrm{~cm}^{3}$ (177 in ${ }^{3}$)	$3600 \mathrm{~cm}^{3}\left(220 \mathrm{in}^{3}\right)$
Cooling	water	water	water
Air filter, cyclonic, dry, cartridge	-	-	-
Fuel consumption (depending on operating conditions)	8 to 9 l /h (2 to 2.3 gph$)$	8 to $9 \mathrm{l} / \mathrm{h}$ (2 to 2.3 gph$)$	7 to $11 \mathrm{l} / \mathrm{h}$ (1.8 to 2.9 gph$)$
Fuel tank capacity	108 I (28.5 gal)	140 l (36.9 gal)	165 I (43.5 gal)
ELECTRICAL SYSTEM	7MWR	9MWR	11MWR
Batteries	100 Ah / 720 A	$100 \mathrm{Ah} / 720 \mathrm{~A}$	$100 \mathrm{Ah} / 720 \mathrm{~A}$
Voltage	12 V	12 V	12 V
Alternator	14 V (120 A)	$14 \mathrm{~V}(120 \mathrm{~A})$	14 V (120 A)
Starter	12 V 2.6 kW	12 V 2.6 kW	12 V 2.6 kW
UNDERCARRIAGE	7MWR	9MWR	11MWR
Rigid	-	-	-
Outside turning radius - 4 steered wheels (optional) - 2 steered wheels	3.52 m (11 ft 7 in) 6.08 m (19ft 11 in$)$	$\begin{aligned} & 3.56 \mathrm{~m} \text { (11 ft 8in) } \\ & 6.10 \mathrm{~m}(20 \mathrm{ft}) \end{aligned}$	$\begin{aligned} & 3.86 \mathrm{~m} \text { (12ft } 8 \mathrm{in}) \\ & 6.41 \mathrm{~m}(21 \mathrm{ft}) \end{aligned}$
Stabilisers controlled independently or in pairs	not available	-	-
TRANSMISSION	7MWR	9MWR	11MWR
Closed hydrostatic center with SENSO DRIVE automotive type automatic regulation	-	-	-
Electronically controlled traveling direction reverser located under joystick	-	-	-
Hydraulic variable displacement pump and motor allow for a continuously variable transmission rate over the whole speed range of the machine	-	-	-
Continuously variable speed	$\begin{aligned} & 0-30 \mathrm{~km} / \mathrm{h} \\ & \text { (i.e. } 0-19 \mathrm{mph} \text {) } \end{aligned}$	$0-20 \mathrm{~km} / \mathrm{h}(0-35 \mathrm{~km} / \mathrm{h}$ in option) ($0-12 \mathrm{mph}$ ($0-22 \mathrm{mph}$ in option)	$0-20 \mathrm{~km} / \mathrm{h}(0-30 \mathrm{~km} / \mathrm{h}$ in option) ($0-12 \mathrm{mph}$ ($0-19 \mathrm{mph}$ in option)
Maximum traction force	3760 daN (8,450 lbf)	4820 daN (10,835 lbf)	4820 daN (10,835 lbf)
Gradeability	60\%	65\%	68\%
Gearbox with automatic shift	not available	option	option

* Environmental Protection Agency (EPA) - Depending on your Local Legislation

TECHNICAL DATA

AXLES AND WHEELS	7MWR	9MWR	11MWR
4-wheel drive	-	-	-
Rigid drive axle on the rear	steering as an option		
Oscillating drive axle on the front to $+/-7^{\circ}$; oscillation block involves 2 hydraulic cylinders	steering axle		
BRAKES	7MWR	9MWR	11MWR
Double circuit central braking system	-	-	-
Oil-immersed multi-disk brakes on each axle	-	-	-
HYDRAULIC SYSTEM	7MWR	9MWR	11MWR
Hydraulic oil tank	56 I (14.8 gal)	61 I (16 gal)	77 I (20.3 gal)
Hydraulic circuit capacity	115 I (30.3 gal)	115 I (30.3 gal)	115 I (30.3 gal)
ATTACHMENT AND ROTATION CIRCUIT			
Variable displacement pump	$45 \mathrm{~cm}^{3}\left(2.7 \mathrm{in}^{3}\right)$	$63 \mathrm{~cm}^{3}\left(3.8 \mathrm{in}^{3}\right)$	$75 \mathrm{~cm}^{3}\left(4.6 \mathrm{in}^{3}\right)$
ACTIVE CONTROL power control "Load Sensing - Flow Sharing" type LUDV main control valve block, proportionality of functions maintained regardless of the pressure level in individual elements	-	-	-
- Maximum flow rate	$100 \mathrm{l} / \mathrm{min}(26.4 \mathrm{gpm}) 145 \mathrm{l} / \mathrm{min}(38.3 \mathrm{gpm}) 165 \mathrm{l} / \mathrm{min}(43.5 \mathrm{gpm})$		
- Maximum working pressure	280 bar (4,060 psi)	280 bar (4,060 psi)	$300 \mathrm{bar}(4,350 \mathrm{psi})$
TRANSMISSION CIRCUIT			
Pump	$125 \mathrm{l} / \mathrm{min}$ (33 gpm)	$1251 / m i n(33 \mathrm{gpm})$	$125 \mathrm{lmin}(33 \mathrm{gpm})$
Max. pressure	$\begin{gathered} 440 \mathrm{bar} \\ (6,382 \mathrm{psi}) \end{gathered}$	$\begin{gathered} 440 \mathrm{bar} \\ (6,382 \mathrm{psi}) \end{gathered}$	$\begin{gathered} 440 \mathrm{bar} \\ \text { (6,382 psi) } \end{gathered}$
UPPERFRAME	7MWR	9MWR	11MWR
Full swing	360°	360°	360°
Slewing by hydraulic motor with automatic braking assured by discs equipped with anti-bounce pressure relief valve	-	-	-
Driven by internal crown slewing wheel	-	-	-
Swing speed	$10 \mathrm{tr} / \mathrm{min}(10 \mathrm{rpm})$	$10 \mathrm{tr} / \mathrm{min}(10 \mathrm{rpm})$	$10 \mathrm{tr} / \mathrm{min}$ (10 rpm)
Swing torque	1330 daNm (9,800 ft.lbf)	$\begin{aligned} & 1690 \mathrm{daNm} \\ & (12,400 \mathrm{ft} . \mathrm{lbf}) \end{aligned}$	2500 daNm (18,440 ft.lbf)
CAB	7MWR	9MWR	11MWR
Extremely comfortable panoramic cab	ROPS and FOPS approved with guard		
Monocoque cab fastened to 4 spring posts	-	-	-
Front windshield partially or fully removable		under the cab roof	
Seat can be set and adjusted to operator height and weight	-	-	-
Water heating system compliant with ISO 10263	-	-	-
Independent settings for joystick support consoles	-	-	-
Controls assisted by ergonomic, proportional joysticks	-	-	-
Dial display of fuel level and coolant temperature	-	-	-
Control panel including colour screen	-	-	-
Proportional hydraulic control of the attachment integrated into the right-hand joystick	-	-	-
Front working light	-	-	-

BOOM AND STICK	7MWR	9MWR	11MWR
Mecalac variable kinematics consisting of 4 parts: boom, intermediate boom, offset and dipperstick	-	-	-
Right and left offset by hydraulic cylinder. System enabling all penetration force to be kept regardless of the angular position of the offset	-	-	-
Left offset	$\begin{gathered} 1382 \mathrm{~mm} \\ (54 \mathrm{in}) \end{gathered}$	$\begin{gathered} 1551 \mathrm{~mm} \\ (61 \mathrm{in}) \end{gathered}$	$\underset{(70 \mathrm{in})}{1775 \mathrm{~mm}}$
Right offset	$\underset{(72 \mathrm{in})}{1820 \mathrm{~mm}}$	$\underset{(75 \mathrm{in})}{1899 \mathrm{~mm}}$	$\begin{gathered} 2034 \mathrm{~mm} \\ (80 \mathrm{in}) \end{gathered}$
Boom cylinder with endof travel shock absorber	-	-	-
Stick length	$\underset{\left(5^{\prime} 5^{\prime \prime}\right)}{1650 \mathrm{~mm}}$	$\underset{\left(5^{\prime} 11^{\prime \prime}\right)}{1800 \mathrm{~mm}}$	$\underset{\left(6^{\prime} 7^{\prime \prime}\right)}{2025 \mathrm{~mm}}$
CONNECT quick coupler - Take up with automatic mechanical locking - Detection of incorrect locking - Hydraulically-controlled unlocking	-	-	-

OPERATING MODES

wORKING MODE

- Turret rotation and dipperstick control with the left control lever
- Bucket and intermediate boom or boom control with the right control lever
- Travelling control using foot pedals

DRIVING MODE

- Deactivation of the manual engine speed control. The engine speed varies depending on how far the travel pedal is depressed
Turning on road headlights
- Turning on rotating beacon
- Locking of machine hydraulic functions (attachment, slewing, outriggers)

Deactivation of oscillation lock (only if oscillation lock selector is on AUTO) and is not activated via the right joystick
Deactivation of the travel alarm

- Display of speed in km / h
- Deactivation of idle functio
- Speed controller

PARKING MODE

- Engages parking brake
- Turns the transmission into Neutral
- Deactivates the accelerator pedal

Set engine rpm into idle

- Locks hydraulic and electrical controls

Sets the screen display in economy mode
Locks the oscillating axle

- Turns on road headlights

[^1]
7.Q.TMM以

TECHNICAL DATA

MACHINE DIMENSIONS	7MWR		9MWR	11MWR
	Mecalac versatile boom*	2-piece boom with offset		
\triangle Overall length with attachment (without stabilisers for the 7MWR)	3730 mm ($12^{\prime} 3^{\prime \prime}$)		4418 mm ($14^{\prime} 6^{\prime \prime}$)	4836 mm ((5'1") $^{\prime \prime}$
B Overall height of structures	2816 mm (9'3')	2961 mm (9'8')	2945 mm (9'8")	3270 mm (10'8")
C Cab height (without attachment)	2816 mm (9'3')		$2829 \mathrm{~mm}\left(9^{\prime} 3^{\prime \prime}\right)$	2855 mm (9'48')
D Cab height (without attachment, with AC option)	2944 mm (9'8')		2970 mm (9'9")	3072 mm (10'1")
B Cover height	1865 mm (6'1")		$\left.1886 \mathrm{~mm} 6^{\prime 2}{ }^{\prime \prime}\right)$	2030 mm (6'8")
F Overhang of lower frame on stabilisers side (without stabilisers for the 7MWR)	$1550 \mathrm{~mm}\left(5^{\prime} 1^{\prime \prime}\right)$		$2159 \mathrm{~mm}\left(7^{\prime} 11^{\prime \prime}\right)$	2275 mm (7'6")
C Overhang of lower frame on blade side	2030 mm (6'8')		2076 mm (6 '1")	2230 mm (7 '4")
[H. Wheelbase	2100 mm (6'1)		2200 mm ($7^{\prime} 3^{\prime \prime}$)	2300 mm (7'7")
\square Blade crossing angle	32°		28°	32°
\checkmark Height with blade raised	374 mm ($1^{\prime} 3^{\prime \prime}$)		391 mm (1'3")	498 mm (1'7")
K Stabilisers crossing angle	-	-	39°	36°
- Height with stabilisers raised	- 43	-	$430 \mathrm{~mm}\left(1^{\prime} 5^{\prime \prime}\right)$	413 mm ($1^{\prime} 4^{\prime \prime}$)
M Ground clearence at axle	$430 \mathrm{~mm}\left(1^{\prime} 5^{\prime \prime}\right)$		430 mm ($1^{\prime} 5$ ")	460 mm ($1^{\prime} 6^{\prime \prime}$)
* with offset				

7.Q.TVMWR

TECHNICAL DATA

MACHINE DIMENSIONS		7MWR		9MWR	11MWR
		Mecalac versatile boom*	2-piece boom with offset		
N	Ground clearance at gearbox	310 m	(1')	310 mm (1')	350 mm (1'2")
\bigcirc	Width of blade	2180 m	(7'2")	2310 mm ($7^{\prime} 7{ }^{\prime \prime}$)	2500 mm ($\left.8^{\prime} 2^{\prime \prime}\right)$
${ }^{\circ}$	Width with 365/70 R18 tires	2025 m	(6'7")	2155 mm (7 '0.8')	-
${ }^{+1}$	Width with 18-19.5 tires				2377 mm (7'9')
O"'	Width with 500/45 R20 tires	2120 m	(6'11")	$2250 \mathrm{~mm}\left(7^{\prime} 4^{\prime \prime}\right)$	-
$0^{\prime \prime \prime}$	Width with 600/40 R22.5 tires			-	2500 mm ($\left.8^{\prime} 2^{\prime \prime}\right)$
O"Im	Width with 8.25-20 twin tires	1988 m	(6'6")	2314 mm ($7^{\prime} 7{ }^{\prime \prime}$)	-
$\mathrm{O}^{\text {-W }}$	Width with 9.00-20 twin tires			-	2294 mm ($7^{\prime} 6^{\prime \prime}$)

MACHINE DIMENSIONS

P Height in folded position

P	Height in folded p
Tail swing radius	

Tail swing rad

* with offset

with offset

7MWR

MECALACVERSATILE BOOM*

A

WORKING RANGES	7MWR Mecalac versatile boom*
A Maximum reach	$6220 \mathrm{~mm}\left(20^{\prime} 5^{\prime \prime}\right)$
B Vertical digging depth maximum with standard bucket	$1657 \mathrm{~mm}\left(5^{\prime} 5\right)$
G Maximum digging depth	$3030 \mathrm{~mm}\left(9^{\prime \prime} 11^{\prime \prime}\right)$
DIGGING PERFORMANCE	7MWR
Break-out force (maximum)	Mecalac versatile boom*
Penetration/Tear-out force (maximum)	$4050 \mathrm{daN}(9,100 \mathrm{lbf})$
* with offset	$2400 \mathrm{daN}(5,400 \mathrm{lbf})$

7MWR
TWO-PIECE BOOM WITH OFFSET

A

WORKING RANGES	7MWR
A Maximum reach	2-piece boom with offset
B Vertical digging depth, maximum, with standard bucket	$6536 \mathrm{~mm}\left(25^{\prime} 5^{\prime \prime}\right)$
C- Maximum digging depth	$1914 \mathrm{~mm}\left(6^{\prime} 3^{\prime \prime}\right)$
DIGGING PERFORMANCE	$3318 \mathrm{~mm}\left(10^{\prime} 10^{\prime \prime}\right)$
Break-out force (maximum)	7MWR
Penetration/Tear-out force (maximum)	2-piece boom with offset

9MWR

MECALACVERSATILE BOOM*

WORKING RANGES	9MWR
Mecalac versatile boom*	
Maximum reach	$6700 \mathrm{~mm}\left(22^{\prime}\right)$
B Vertical digging depth, maximum, with standard bucket	$1928 \mathrm{~mm}\left(6^{\prime} 4^{\prime \prime \prime}\right)$
G Maximum digging depth	
DIGGING PERFORMANCE	
Break-out force (maximum)	9MWR
Penetration/Tear-out force (maximum)	Mecalac versatile boom*
* with offset	5100 daN $(11,460 \mathrm{lbf})$

11MWR

MECALACVERSATILE BOOM*

\triangle

WORKING RANGES	11MWR Mecalac versatile boom*
A Maximum reach	$7500 \mathrm{~mm}\left(24^{\prime} 7^{\prime \prime}\right)$
B Vertical digging depth, maximum, with standard bucket	$1949 \mathrm{~mm}\left(6^{\prime} 5^{\prime \prime}\right)$
C Maximum digging depth	$3800 \mathrm{~mm}\left(12^{\prime} 6^{\prime \prime}\right)$
DIGGING PERFORMANCE	11MWR
Break-out force (maximum)	Mecalac versatile boom*
Penetration/Tear-out force (maximum)	$6500 \mathrm{daN}(14,600 \mathrm{lbf})$
" with offset	$3300 \mathrm{daN}(7,400 \mathrm{lbf})$

LIFTING CAPACITIES WITH PALLET FORKS

All the weights are given in kg (lb) with CONNECT

WORKING CONDITIONS
On wheels, blade on the ground
Bom and stick used without offs
Boom and
Oscillation axle blocked
Equiped with 4 safety valves
ACCORDING TO ISO 10567 Maximal 75% of the tipping load or 87% of the hydraulic capacity Maximum values determined for the most unfavorable position of boom and cylinders

LIFTING CAPACITIES WITH LOADING HOOK - BLADE RAISED
All the weights are given in $\mathrm{kg}(\mathrm{lb})$ with CONNECT.

	2M(67")		3M(9'10")		4M(1311")		5M (16'5")	
	$+{ }^{\pi}$	Fin		Fin]		Pill	W	
$\begin{gathered} 5 M \\ \left(165^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{aligned} & 2560 \\ & (5,640) \end{aligned}$	$\begin{gathered} 2560 \\ (5,640) \end{gathered}$	-		-	
$\begin{gathered} 3 M \\ \left(9^{\prime} 10^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 2130 \\ (4,700) \end{gathered}$	$\begin{gathered} 1700 \\ (3,750) \end{gathered}$	$\begin{gathered} 1550 \\ (3,420) \end{gathered}$	$\begin{gathered} 150 \\ (2,540) \end{gathered}$			
$\frac{15 M}{\left(411^{\prime \prime}\right)}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{aligned} & 3000 \\ & (6,600) \end{aligned}$	$\begin{gathered} 2250 \\ (4,960) \end{gathered}$	$\begin{gathered} 1460^{\star} \\ \left(3,220^{\star}\right) \end{gathered}$	$\begin{aligned} & 1530 \\ & (3,370) \end{aligned}$	$\begin{gathered} 980^{*} \\ (2,160) \end{gathered}$
OM	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 2560 \\ (5,640) \end{gathered}$	$\begin{gathered} 2160 \\ (4,760) \end{gathered}$	$\begin{gathered} 1450 \\ (3,200) \end{gathered}$	$\begin{gathered} 1460 \\ (3,220) \end{gathered}$	$\begin{gathered} 940^{*} \\ (2,070) \end{gathered}$
$\begin{aligned} & \hline \mathbf{1 M} \\ & \left(-33^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{aligned} & 3000 \\ & (6,600) \end{aligned}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 2300 \\ (5,070) \end{gathered}$	$\begin{gathered} 2050 \\ (4,520) \end{gathered}$	$\begin{gathered} 1480 \\ (3,260) \end{gathered}$	$\begin{aligned} & 1120 \\ & (2470) \end{aligned}$	$\begin{aligned} & 1050 \\ & (2,310) \end{aligned}$
$\begin{aligned} & -2 M \\ & \left(-67^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 2020^{*} \\ \left(4,450^{*}\right) \end{gathered}$	$\begin{gathered} 2020 \\ (4,450) \end{gathered}$	$\begin{gathered} 1190 \\ (2,620) \end{gathered}$	$\begin{gathered} 1190 \\ (2,620) \end{gathered}$	-	-

"Working in longitudinal position on blade side . Working over the side or at 360°

WORKING CONDITIONS
On wheels, blade on the ground or raised On horizontal, compact ground Boom and stick used without off Without tools (bucketigned Without tools (bucket, shovel...) with handling late and loading hook of $3 \mathrm{t}(6,613 \mathrm{lb})$ the hydraulic capacity
Maximum values determined for optimal position of boom and cylinders
The lifting capabilities shown with an asterisk ${ }^{*}$ (*) are limited by the tipping load that can be lifted. Other values are limited by the hydraulic capabilities or capability of the loading hook. The weight of the chain sling, bucket and other auxiliary lifting devices must be deducted from the nominal load to determine the load which can be lifted.

7MWR-HANDLING

LIFTING CAPACITIES WITH PALLET FORKS
All the weights are given in $\mathrm{kg}(\mathrm{lb})$ with CONNECT

LIFTING CAPACITIES WITH LOADING HOOK - BLADE ON GROUND
All the weights are given in $\mathrm{kg}(\mathrm{lb})$ with CONNECT.

	2M(677)		3M($\left.9^{\prime \prime} 10^{\prime \prime}\right)$		4M(13311)		5M(16'5")	
	$+\pi$	Fill		Fil			F	$\mathrm{F}_{4}^{\prime} 1$
$\begin{gathered} 5 M \\ \left(165^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 2320 \\ (5,115) \end{gathered}$	$\begin{gathered} 2320 \\ (5,115) \end{gathered}$	$\begin{gathered} 1460 \\ (3,219) \end{gathered}$	$\begin{gathered} 1460 \\ (3,219) \end{gathered}$	-	-		
$\begin{gathered} 3 M \\ \left(9^{\prime} 10^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 2110 \\ (4,652) \end{gathered}$	$\begin{gathered} 2060 \\ (4,541) \end{gathered}$	$\begin{gathered} 2080 \\ (4,586) \end{gathered}$	$\begin{gathered} 2080 \\ (4,586) \end{gathered}$	$\begin{gathered} 1780 \\ (3,924) \end{gathered}$	$\begin{gathered} 1470^{*} \\ (3,241)^{*} \end{gathered}$	$\begin{gathered} 1160 \\ (2,557) \end{gathered}$	$\begin{gathered} 930^{*} \\ (2,050)^{*} \end{gathered}$
$\frac{15 M}{\left(4^{1} 11^{\prime \prime}\right)}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000^{*} \\ (6,600)^{*} \end{gathered}$	$\begin{gathered} 2910 \\ (6,415) \end{gathered}$	$\begin{gathered} 2290^{*} \\ (5,048)^{*} \end{gathered}$	$\begin{gathered} 1940 \\ (4,277) \end{gathered}$	$\begin{gathered} 1430^{*} \\ (3,153)^{*} \end{gathered}$	$\begin{aligned} & 1370 \\ & (3,020) \end{aligned}$	$\begin{gathered} 920^{*} \\ (2,028)^{*} \end{gathered}$
OM	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000^{*} \\ (6,600)^{*} \end{gathered}$	$\begin{gathered} 2900 \\ (6,393) \end{gathered}$	$\begin{gathered} 22220^{*} \\ (4,894)^{*} \end{gathered}$	$\begin{gathered} 1910 \\ (4,211) \end{gathered}$	$\begin{gathered} 1310^{*} \\ (2,888)^{*} \end{gathered}$	$\begin{gathered} 1110 \\ (2,447) \end{gathered}$	$\begin{gathered} 860^{*} \\ (1,896)^{*} \end{gathered}$
$\begin{gathered} 1 \mathrm{M} \\ \left(-33^{\prime}\right) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000^{*} \\ (6,600)^{*} \end{gathered}$	$\begin{gathered} 2720 \\ (5,996) \end{gathered}$	$\begin{gathered} 2010^{*} \\ (4,431)^{*} \end{gathered}$	$\begin{gathered} 1510 \\ (3,329) \end{gathered}$	$\begin{gathered} 12200^{*} \\ (2,689)^{*} \end{gathered}$	$\begin{gathered} 670 \\ (1,477) \end{gathered}$	$\begin{gathered} 640 \\ (1,411) \end{gathered}$
$\begin{aligned} & -2 M \\ & \left(-67^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 1600 \\ (3,527) \end{gathered}$	$\begin{aligned} & 1550 \\ & (3,417) \end{aligned}$	$\begin{gathered} 730 \\ (1,609) \end{gathered}$	$\begin{gathered} 700 \\ (1,543) \end{gathered}$		

Working in longitudinal position on blade side Working over the side or at 360°

LIFTING CAPACITIES WITH LOADING HOOK - BLADE RAISED
All the weights are given in kg (b) with CONNECT
All the weights are given in kg (lb) with CONNECT.

	2M(67")		3M(9'10")		4M (13 ${ }^{\prime} 1^{\prime \prime \prime}$)		5M(16'5")	
	$+\pi$	Pi	E	Fil	C	Fil	H	Pil
$\begin{gathered} 5 \eta \\ \left(166^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 2320 \\ (5,115) \end{gathered}$	$\begin{gathered} 2320 \\ (5,115) \end{gathered}$	$\begin{gathered} 1460 \\ (3,219) \end{gathered}$	$\begin{gathered} 1460 \\ (3,219) \end{gathered}$	-			
$\begin{array}{r} 3 M \\ \left(9^{9} 10^{\prime \prime \prime}\right) \\ \hline \end{array}$	$\begin{gathered} 2110 \\ (4,652) \end{gathered}$	$\begin{gathered} 2110 \\ (4,652) \end{gathered}$	$\begin{gathered} 2080 \\ (4,586) \end{gathered}$	$\begin{gathered} 2080 \\ (4,586) \end{gathered}$	$\begin{gathered} 1510^{*} \\ (3,329)^{*} \end{gathered}$	$\begin{gathered} 1290^{*} \\ (2,844)^{*} \end{gathered}$	$\begin{gathered} 950^{*} \\ (2,094)^{*} \end{gathered}$	$\underset{(1,764)^{*}}{800^{*}}$
$\frac{15 M}{\left(411^{\prime}\right)}$	$\begin{gathered} 3000^{*} \\ (6,600)^{*} \end{gathered}$	$\begin{aligned} & 3000 \\ & (6,600) \end{aligned}$	$\begin{aligned} & 2400^{*} \\ & (5,291)^{*} \end{aligned}$	$\begin{gathered} 2035^{*} \\ (4,486)^{*} \end{gathered}$	$\begin{gathered} 1460^{*} \\ (3,219)^{*} \end{gathered}$	$\begin{gathered} 1250^{*} \\ (2,756)^{*} \end{gathered}$	$\begin{gathered} 940^{*} \\ (2,072)^{*} \end{gathered}$	$\begin{gathered} 790^{*} \\ (1,742)^{*} \end{gathered}$
OM	$\begin{gathered} 3000^{*} \\ (6,600)^{*} \end{gathered}$	$\underset{(6,600)^{*}}{\substack{*}}$	$\begin{gathered} 2330^{*} \\ (5,137)^{*} \end{gathered}$	$\begin{gathered} 1920^{*} \\ (4,233)^{*} \end{gathered}$	$\begin{gathered} 1350^{*} \\ (2,976)^{*} \end{gathered}$	$\begin{gathered} 1130^{*} \\ (2,491)^{*} \end{gathered}$	$\begin{gathered} 880^{*} \\ (1,940)^{*} \end{gathered}$	$\underset{(1,609)^{*}}{730^{*}}$
$\frac{1 M}{\left(-33^{\prime}\right)}$	$\begin{gathered} 3000^{*} \\ (6,600)^{*} \end{gathered}$	$\begin{gathered} 3000^{*} \\ (6,600)^{*} \end{gathered}$	$\begin{gathered} 2110^{*} \\ (4,652)^{*} \end{gathered}$	$\begin{gathered} 1720^{*} \\ (3,792)^{*} \end{gathered}$	$\begin{gathered} 1260^{*} \\ (2,778)^{*} \end{gathered}$	$\begin{gathered} 1050^{*} \\ (2,315)^{*} \end{gathered}$	$\begin{gathered} 670 \\ (1,477) \end{gathered}$	$\begin{gathered} 640 \\ (1,411) \end{gathered}$
$\begin{aligned} & \hline-2 M \\ & \left(-67^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 1600 \\ (3,527) \end{gathered}$	$\begin{gathered} 1600 \\ (3,527) \end{gathered}$	$\begin{gathered} 730 \\ (1,609) \end{gathered}$	$\begin{gathered} 700 \\ (1,543) \end{gathered}$		

"Working in longitudinal position on blade side Working over the side or at 360°

WORKING CONDITIONS

On wheels, blade on the ground or raised
On horizontal, compact ground
Boom and stick used without offset Front and rear frame aligned
Without tools (bucket, shovel...) with handling plate and loading hook of 3 t 6,613 lb)
Maximal 75% of the tipping load or 87% of
Maximum values determined for optimal position of boom and cylinders

The lifting capabilities shown with an asterisk ${ }^{*}$ *) are limited by the tipping load that can be lifted. Other values are limited by the ydraulic capabilities or capability of the bucket and other auxiliary lifting devices must be deducted from the nominal load to determine the load which can be lifted.

LIFTING CAPACITIES WITH PALLET FORKS
All the weights are given in $\mathrm{kg}(\mathrm{lb})$ with CONNECT

WORKING CONDITIONS
On wheels, blade and stabilisers on ground or raised
On horizontal, compact ground
Boom and stick used without offset Oscillation axle blocked
Equiped with pallet fork
Equiped with 4 safety valves
ACCORDING TO ISO 10567 Maximal 75\% of the tipping load or 87% of the hydraulic capacity
Maximum values determined for he most unfavorable and cylinders

* with offset

LIFTING CAPACITIES WITH LOADING HOOK - STABLLISERS AND BLADE ON GROUND All the weights are given in kg (lb) with CONNECT.

	2M(6'7")		3M(9'10")		4M(13311)		5M(16'5")	
	$\left.+{ }^{[}\right]$		E	Fin	S	EM	近	Pro
$\begin{gathered} 5 M \\ \left(16^{\prime} 5^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{aligned} & 3000 \\ & (6,600) \end{aligned}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 2470 \\ (5,450) \end{gathered}$	$\begin{gathered} 2470 \\ (5,450) \end{gathered}$	-	
$\begin{gathered} 3 M \\ \left(9^{\prime} 10^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 2560 \\ (5,640) \end{gathered}$	$\begin{gathered} 2560 \\ (5,640) \end{gathered}$	$\begin{gathered} 2030 \\ (4,480) \end{gathered}$	$\begin{gathered} 1810 \\ (3,990) \end{gathered}$			
$\begin{aligned} & 15 M \\ & \left(4^{\prime} 11^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 2460 \\ (5,420) \end{gathered}$	$\begin{gathered} 1710 \\ (3,770) \end{gathered}$					
OM	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{aligned} & 3000 \\ & (6,600) \end{aligned}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 2340 \\ (5,160) \end{gathered}$	$\begin{gathered} 2270 \\ (5,000) \end{gathered}$	$\begin{gathered} 1680 \\ (3,700) \end{gathered}$
$\frac{.1 \mathrm{M}}{\left(-33^{\prime \prime}\right)}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 2280 \\ (5,030) \end{gathered}$	$\begin{gathered} 1780 \\ (3,920) \end{gathered}$	$\begin{gathered} 1600 \\ (3,530) \end{gathered}$				
$\begin{gathered} -2 \mathrm{M} \\ (-6.7 \mathrm{fi}) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{aligned} & 3000 \\ & (6,600) \end{aligned}$	$\begin{gathered} 3000 \\ (6,600) \end{gathered}$	$\begin{gathered} 1910 \\ (4,210) \end{gathered}$	$\begin{gathered} 1910 \\ (4,210) \end{gathered}$	$\begin{gathered} 900 \\ (1,980) \end{gathered}$	$\begin{gathered} 900 \\ (1,980) \end{gathered}$

LIFTING CAPACITIES WITH LOADING HOOK - STABILISERS AND BLADE RAISED All the weights are given in $\mathrm{kg}(\mathrm{lb})$ with CONNECT.

WORKING CONDITIONS
On wheels, blade and stabilisers raised On horizontal, compact ground - Boom and stick used without offse Front and rear frame aligned - Without tools (bucket, shovel...) With handling plate and

- Maximal 75% of the tipping load or 87% of the hydraulic capacity
Maximum values determined for optimal position of boom and cylinders

The lifting capabilities shown with an asterisk ${ }^{*}$) are limited by the tipping load that can be lifted. Other values are limited by the hydraulic capabilities or capability of the bucket and other auxiliary lifting devices must be deducted from the nominal load to determine the load which can be lifted.

LIFTING CAPACITIES WITH LOADING HOOK - STABILISERS AND BLADE ON GROUND

All the weights are given in $\mathrm{kg}(\mathrm{lb})$ with CONNECT

	2M(6'71)		3M(9'10")		$4 \mathrm{M}\left(13^{\prime} 1^{\prime \prime}\right)$		5M (16'5")		6M (19'8")	
	$+{ }^{[}$		$[$		Feb		E	Fit		
$\begin{gathered} 5 M \\ \left(16^{\prime \prime} 5^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{gathered} 3400 \\ (7,500) \end{gathered}$	$\begin{gathered} 3400 \\ (7,500) \end{gathered}$	$\begin{gathered} 2740 \\ (6,040) \end{gathered}$	$\begin{gathered} 2740 \\ (6,040) \end{gathered}$		
$\begin{gathered} 3 / 4 \\ \left(9^{\prime} 10^{\prime \prime}\right) \end{gathered}$	-		$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 3080 \\ (6,790) \end{gathered}$	$\begin{gathered} 3080 \\ (6,790) \end{gathered}$	$\begin{aligned} & 2360 \\ & (5,200) \end{aligned}$	$\begin{gathered} 2280 \\ (5,030) \end{gathered}$			
$\frac{15 M}{\left(4^{\prime} 11^{\prime \prime}\right)}$	-		$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 2910 \\ (6,420) \end{gathered}$	$\begin{gathered} 2820 \\ (6,220) \end{gathered}$	$\begin{gathered} 2170 \\ (4,780) \end{gathered}$
OM	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 2590 \\ (5,710) \end{gathered}$	$\begin{gathered} 3100 \\ (6,830) \end{gathered}$	$\begin{gathered} 1830^{*} \\ \left(4,030^{*}\right) \end{gathered}$			
$\frac{.1 \mathrm{M}}{\left(-33^{\prime \prime}\right)}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 2450^{*} \\ \left(5,400^{*}\right) \end{gathered}$	$\begin{aligned} & 2640 \\ & (5,820) \end{aligned}$	$\begin{gathered} 1790^{*} \\ \left(3,950^{*}\right) \end{gathered}$				
$\begin{gathered} -2 \mathrm{M} \\ (-6.7 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 3140 \\ (6,920) \end{gathered}$	$\begin{gathered} 2690 \\ (5,930) \end{gathered}$	-	-

WORKING CONDITIONS

On wheels, blade and stabilisers on
the ground
On horizontal, compact ground Boom and stick used without offset Oscillation axle blocked
Equiped with 4 safety valves
ACCORDING TO ISO 10567 Maximal 75\% of the tipping load or 87% of the hydraulic capacity Maximum values determined for the most unfavorable position of boom and cylinders

with offset

LIFTING CAPACITIES WITH LOADING HOOK - STABILISERS AND BLADE RAISED
All the weights are given in kg (lb) with CONNECT

	2M (677)		$\text { 3M }\left(9^{\prime} 10^{\prime \prime \prime}\right)$		4M (13311")		5M (16.5")		$6 M\left(19^{\prime} 8^{\prime \prime}\right)$	
	$+r$	Fin	E	$F_{1}^{2} 1$	Ft	$F i$	F	Fill	E	$\mathrm{F}_{\mathrm{E}}^{1}$
$\begin{gathered} 5 M \\ \left(165^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 3400 \\ (7,500) \end{gathered}$	$\begin{gathered} 2900 \\ (6,390) \end{gathered}$	$\begin{aligned} & 2410 \\ & (5,310) \end{aligned}$	$\begin{aligned} & 1660^{*} \\ & (3,660) \end{aligned}$		
$\begin{gathered} \frac{3 M}{\left(9^{\prime} 10^{\prime \prime}\right)} \end{gathered}$	-	-	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{aligned} & 4000 \\ & (88,820) \end{aligned}$	$\begin{gathered} 2830 \\ (6,240) \end{gathered}$	$\begin{gathered} 2500 \\ (5,510) \end{gathered}$	$\begin{gathered} 1690^{*} \\ \left(3,730^{*}\right) \end{gathered}$	$\begin{gathered} 1520^{*} \\ \left(3,350^{*}\right) \end{gathered}$	$\begin{gathered} 1160^{*} \\ \left(2,560^{*}\right) \end{gathered}$
$\frac{154}{\left.(4111)^{2}\right)}$	-	-	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{gathered} 2790 \\ (6,150) \end{gathered}$	$\begin{gathered} 2090^{*} \\ (4,600) \end{gathered}$	$\underset{\left(3,50^{*}\right)}{161)}$	$\underset{\left(3,240^{*}\right)}{(470 *}$	$\begin{gathered} 1110^{*} \\ \left(2,450^{*}\right) \end{gathered}$
OM	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 2990 \\ (6,590) \end{gathered}$	$\begin{gathered} 2240^{*} \\ \left(4,940^{*}\right) \end{gathered}$	$\begin{gathered} 2100 \\ (4,630) \end{gathered}$	$\begin{gathered} 1480^{*} \\ \left(3,260^{*}\right) \end{gathered}$	$\begin{gathered} 1600 \\ (3,530) \end{gathered}$	$\begin{gathered} 1040^{*} \\ \left(2,290^{*}\right) \end{gathered}$			
$\frac{.1 \mathrm{M}}{\left(-33^{\prime \prime}\right)}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{aligned} & 4000 \\ & (8,820) \end{aligned}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 3040 \\ (6,700) \end{gathered}$	$\begin{aligned} & 2220 \\ & (4,670) \end{aligned}$	$\begin{gathered} 2150 \\ (4,740) \end{gathered}$	$\begin{gathered} 1490 \\ (3,280) \end{gathered}$	$\begin{gathered} 1350^{*} \\ \left(2,980^{*}\right) \end{gathered}$	$\begin{gathered} 1110 \\ (2,450) \end{gathered}$
$\begin{gathered} -2 M \\ (-6.7 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 4000 \\ (8,820) \end{gathered}$	$\begin{gathered} 2590^{*} \\ \left(5,710^{*}\right) \end{gathered}$	$\begin{gathered} 2200 \\ (4,850) \end{gathered}$	$\begin{gathered} 1790^{*} \\ \left(3,950^{*}\right) \end{gathered}$	$\begin{gathered} 1350 \\ (2,980) \end{gathered}$.	-			

wORKING CONDITIONS
On wheels, blade and stabilisers on ground or
On horizontal, compact ground Boom and stick used without offset Front and rear frame aligned Without tools (bucket, shovel,...) with (8,818lb) 8,8181b
Maximal 75% of the tipping load or 87% of Maximulic capacity
position of boom determined for optima
The lifting capabilities shown with an asterisk are limited by the tipping load that can be lifted. Other values are limited by the hydraulic capabilities or capability of the bading hook. The weight of the chain sling, bucket and other auxiliary lifting devices ust be deducted from the nominal load to determine the load which can be lifted.
7.Q.12MWR

HYDRAULIC ATTACHMENTS

7MWR

FLOW RATE/PRESSURE AUXILIARY 1 (PROPORTIONAL)

AUXILIARY LINE 2	DATA
Offset cylinder diverted (clamshell rotation)	
Flow rate maximum	$30 \mathrm{l} / \mathrm{min}$ (7.9 gpm)
Pressure	280 bar (4,050 psi)
Controls	Proportional as option
AUXILIARY LINE 3	DATA
Bucket cylinder diverted (clamshell function)	
Flow rate maximum	$80 \mathrm{l} / \mathrm{min}(21.1 \mathrm{gpm})$
Pressure maximum	280 bar (4,050 psi)

9MWR

FLOW RATE / PRESSURE AUXILIARY 1 (PROPORTIONAL)

AUXILIARY LINE 2	DATA
Offset cylinder diverted (clamshell rotation)	
Flow rate maximum	$\mathbf{3 0 1} / \mathbf{m i n}(7.9 \mathrm{gpm})$
Pressure	$280 \mathrm{bar}(4,050 \mathrm{psi})$
Controls	Proportional as option

AUXILIARY LINE 3

Bucket cylinder diverted (clamshell function)
Flow rate maximum
Pressure maximum

HMWR

FLOW RATE / PRESSURE AUXILIARY 1 (PROPORTIONAL)

AUXILIARY LINE 2	DATA
Offset cylinder diverted (clamshell rotation)	
Flow ratemaximum	$\mathbf{3 0} \mathbf{l / m i n}(7.9 \mathrm{gpm})$
Pressure	$300 \mathrm{bar}(4,350 \mathrm{psi})$
Controls	Proportional as option

AUXILIARY LINE 3

DATA

Bucket cylinder diverted (clamshell function)
Flow rate maximum
$120 \mathrm{I} / \mathrm{min}(31.7 \mathrm{gpm})$
Pressure maximum
$300 \mathrm{bar}(4,350 \mathrm{psi})$
\qquad

MECALAC FRANCE S.A.S.
2, avenue du Pré de Challes Parc des Glaisins - CS 40230 Annecy-le-Vieux
FR - 74942 Annecy Cedex
Tel. +33 (0)4 50640163

Am Friedrichsbrunnen
D-24782 Büdelsdorf
Tel. +49 (0)43 31/3 51-319

MECALAC CONSTRUCTION EQUIPMENT UK LTD
Central Boulevard
ProLogis Park
Coventry, CV6 4BX, UK
Tél. +44 (0)24 76339539

MECALAC İS MAKINELERI
SAN VE TIC. LTD. STI.
Ege Serbest Bölgesi Nilüfer 1 Sok. No: 34
35410, Gaziemir
İzmir - Türkiye
Tel. +90 2322201115
f sin in

[^0]: - Standard and optional equipment may vary. Consult your Mecalac dealer for details.

[^1]: NOTE: METRIC MEASUREMENTS ARE THE CRITICAL VALUES

 - 1 Litre $=0.26417$ US Liquid Gallons
 -1 Litre $=0.21997$ Imperial Liquid Gallons

